Factorizing the Problem
$p \left( \left\{ \Delta E \right\} | \left\{ \vec{m} \right\} \right)$
$\propto p \left( \left\{ \Delta E \right\} \right)$
$\prod_{k}$
$\int$
$\mathrm{d} \mu_{k}$
$\mathrm{d} \Theta_{k}$
$\mathrm{d} \delta_{k}$
$p \left( \vec{m}_{k} \, | \, \mu_{k} , \Theta_{k} , \left\{ \Delta E \right\} , \delta_{k} \right)$
$\times \ p \left( \mu_{k} , \Theta_{k}, \delta_{k} \, | \, \left\{ \Delta E \right\} \right)$
For each star, pre-compute
$\tilde{p} \left( \mu_{k} , E \, | \, \vec{m}_{k} \right) = $
$\int \mathrm{d} \delta_{k}$
$\int \mathrm{d} \Theta_{k}$
$p \left( \mu_{k} , \Theta_{k} , \vphantom{\left( 1 + \delta_{k} \right)} \right.$
$\left( 1 + \delta_{k} \right)$
$\left. E \, | \, \vec{m}_{k} \right)$
$p \left( \delta_{k} \, | \, E \right)$
Then sample the line of sight
$p \left( \left\{ \Delta E \right\} | \left\{ \vec{m} \right\} \right)$
$\propto p \left( \left\{ \Delta E \right\} \right)$
$\prod_{k}$
$\int \mathrm{d} \mu_{k}$
$\tilde{p} \left( \mu_{k} , E \left( \mu_{k} , \left\{ \Delta E \right\} \right) | \, \vec{m}_{k} \right)$
$\hphantom{p \left( \left\{ \Delta E \right\} | \left\{ \vec{m} \right\} \right) \propto p \left( \left\{ \Delta E \right\} \right) \prod_{k} \int \mathrm{d} \mu_{k} \ } \underbrace{\hphantom{ \tilde{p} \left( \mu_{k} , E \left( \mu_{k} , \left\{ \Delta E \right\} \right) | \, \vec{m}_{k} \right) }}_{\mathrm{pre-computed}}$